论文标题
通过目标特异性归一化的可推广模型 - 不足语义分割
Generalizable Model-agnostic Semantic Segmentation via Target-specific Normalization
论文作者
论文摘要
近年来,以有监督的学习方式进行语义细分取得了重大进展。但是,由于我们直接部署训练有素的模型以分割看不见(或新来的)域的图像时,其性能通常会大大下降,这是由于可见和看不见的域之间的数据分布差异。为此,我们为可推广的语义分割任务提出了一个新颖的域概括框架,从而增强了模型从两种不同观点(包括训练范式和测试策略)的概括能力。具体而言,我们利用模型 - 不合SNOSTIC学习来模拟域移位问题,该问题从训练方案的角度涉及域的概括。此外,考虑到可见的源和看不见的目标域之间的数据分布差异,我们开发了特定于目标的归一化方案以增强概括能力。此外,当图像在测试阶段一一逐个时,我们设计了基于图像的内存库(简称图像库),其基于样式的选择策略可以选择相似的图像以获得更准确的标准化统计统计数据。广泛的实验表明,该提出的方法为在多个基准分段数据集(即CityScapes,Mapillary)上的语义分割的域概括产生了最新性能。
Semantic segmentation in a supervised learning manner has achieved significant progress in recent years. However, its performance usually drops dramatically due to the data-distribution discrepancy between seen and unseen domains when we directly deploy the trained model to segment the images of unseen (or new coming) domains. To this end, we propose a novel domain generalization framework for the generalizable semantic segmentation task, which enhances the generalization ability of the model from two different views, including the training paradigm and the test strategy. Concretely, we exploit the model-agnostic learning to simulate the domain shift problem, which deals with the domain generalization from the training scheme perspective. Besides, considering the data-distribution discrepancy between seen source and unseen target domains, we develop the target-specific normalization scheme to enhance the generalization ability. Furthermore, when images come one by one in the test stage, we design the image-based memory bank (Image Bank in short) with style-based selection policy to select similar images to obtain more accurate statistics of normalization. Extensive experiments highlight that the proposed method produces state-of-the-art performance for the domain generalization of semantic segmentation on multiple benchmark segmentation datasets, i.e., Cityscapes, Mapillary.