论文标题

可控的人图像合成与属性重构的gan

Controllable Person Image Synthesis with Attribute-Decomposed GAN

论文作者

Men, Yifang, Mao, Yiming, Jiang, Yuning, Ma, Wei-Ying, Lian, Zhouhui

论文摘要

本文介绍了属性构成的gan,这是一种可控人图像合成的新型生成模型,可以在各种源输入中提供具有所需人类属性(例如,姿势,头部,上衣和裤子)的真实人物图像(例如,姿势,头部,上衣和裤子)。提出的模型的核心思想是将人类属性嵌入潜在空间中,作为独立代码,从而通过混合和插值操作以明确的样式表示来实现属性的灵活和连续控制。具体而言,提出了一个由两个带有样式块连接的编码途径组成的新体系结构,以将原始硬映射分解为多个更容易访问的子任务。在源途径中,我们进一步提取具有现成的人类解析器的组件布局,并将其馈入共享的全局纹理编码器,以进行分解的潜在代码。该策略允许综合更现实的输出图像和自动分离未注销的属性。实验结果表明,拟议方法在姿势转移方面具有优势及其在组成属性转移的全新任务中的有效性。

This paper introduces the Attribute-Decomposed GAN, a novel generative model for controllable person image synthesis, which can produce realistic person images with desired human attributes (e.g., pose, head, upper clothes and pants) provided in various source inputs. The core idea of the proposed model is to embed human attributes into the latent space as independent codes and thus achieve flexible and continuous control of attributes via mixing and interpolation operations in explicit style representations. Specifically, a new architecture consisting of two encoding pathways with style block connections is proposed to decompose the original hard mapping into multiple more accessible subtasks. In source pathway, we further extract component layouts with an off-the-shelf human parser and feed them into a shared global texture encoder for decomposed latent codes. This strategy allows for the synthesis of more realistic output images and automatic separation of un-annotated attributes. Experimental results demonstrate the proposed method's superiority over the state of the art in pose transfer and its effectiveness in the brand-new task of component attribute transfer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源