论文标题
二次f(r)重力中的裸奇异点
Naked singularities in quadratic f(R) gravity
论文作者
论文摘要
我们在Starobinsky的二次F(R)重力中发现了新的静态,球形对称性和渐近平坦的真空解决方案。我们通过围绕起源的渐近分析来系统地对这些解决方案进行分类,并找到七个不同的整数Frobenius家族。我们通过双射击方法来数值求解精确的运动方程,并通过将数值解与弱场式中线性化场方程的分析解决方案匹配来指定边界条件。我们发现,所有整数Frobenius家族都可以连接到渐近平坦的溶液并在参数空间中追踪线,从而最终将所有自由参数与无穷大的总质量联系起来。
We find new static, spherically symmetric, and asymptotically flat vacuum solutions without horizon in Starobinsky's quadratic f(R) gravity. We systematically classify these solutions by an asymptotic analysis around the origin and find seven different integer Frobenius families. We numerically solve the exact equations of motion by a double-shooting method and specify boundary conditions by matching the numerical solution to the analytic solution of the linearised field equations in the weak field regime. We find that all integer Frobenius families can be connected to asymptotically flat solutions and trace out lines in the parameter space, allowing to ultimately relate all free parameters to the total mass at infinity.