论文标题
在无限域上非线性声波中记忆效应和热放松的数学分析
Mathematical analysis of memory effects and thermal relaxation in nonlinear sound waves on unbounded domains
论文作者
论文摘要
通过放松的遗传培养基的非线性声波传播的动机,我们研究了非本地的三阶Jordan-Moore-Gibson-Gibson-Thompson-Thompson声波方程。在假设宽松内核呈指数衰减的假设下,我们证明了在无界的二维和三维结构域中局部良好的性能。此外,我们表明,三维模型的解决方案在全球范围内及时存在于较小且流畅的数据,而系统的能量则衰减。
Motivated by the propagation of nonlinear sound waves through relaxing hereditary media, we study a nonlocal third-order Jordan-Moore-Gibson-Thompson acoustic wave equation. Under the assumption that the relaxation kernel decays exponentially, we prove local well-posedness in unbounded two- and three-dimensional domains. In addition, we show that the solution of the three-dimensional model exists globally in time for small and smooth data, while the energy of the system decays polynomially.