论文标题

用于图形处理器性能建模的在线学习方法

An Online Learning Methodology for Performance Modeling of Graphics Processors

论文作者

Gupta, Ujjwal, Babu, Manoj, Ayoub, Raid, Kishinevsky, Michael, Paterna, Francesco, Gumussoy, Suat, Ogras, Umit

论文摘要

在320万个智能手机应用程序中,约有18%依靠集成图形处理单元(GPU)来实现竞争性能。图形性能通常以每秒为单位测量,是GPU频率的强大功能,这反过来又对移动处理器功耗产生了重大影响。因此,动态功率管理算法必须准确评估对频率的性能敏感性,以便有效地选择GPU的工作频率。由于GPU频率对性能的影响随着时间的流逝而迅速变化,因此需要在线绩效模型可以适应不同的工作负载。本文提出了一种轻巧的自适应运行时性能模型,该模型可预测在没有APRIORI表征的情况下在运行时进行图形工作负载的帧处理时间。我们采用此模型来估计框架时间对GPU频率的敏感性,即相对于GPU频率的框架时间的部分导数。提出的模型不依赖于离线学习的任何参数。我们在具有常见GPU基准的商业平台上进行的实验表明,框架时间和框架时间灵敏度预测中的平均绝对百分比误差分别为4.2%和6.7%。

Approximately 18 percent of the 3.2 million smartphone applications rely on integrated graphics processing units (GPUs) to achieve competitive performance. Graphics performance, typically measured in frames per second, is a strong function of the GPU frequency, which in turn has a significant impact on mobile processor power consumption. Consequently, dynamic power management algorithms have to assess the performance sensitivity to the frequency accurately to choose the operating frequency of the GPU effectively. Since the impact of GPU frequency on performance varies rapidly over time, there is a need for online performance models that can adapt to varying workloads. This paper presents a light-weight adaptive runtime performance model that predicts the frame processing time of graphics workloads at runtime without apriori characterization. We employ this model to estimate the frame time sensitivity to the GPU frequency, i.e., the partial derivative of the frame time with respect to the GPU frequency. The proposed model does not rely on any parameter learned offline. Our experiments on commercial platforms with common GPU benchmarks show that the mean absolute percentage error in frame time and frame time sensitivity prediction are 4.2 and 6.7 percent, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源