论文标题

使用光学显微镜准确测定半导体扩散系数

Accurate Determination of Semiconductor Diffusion Coefficient Using Optical Microscopy

论文作者

deQuilettes, Dane W., Brenes, Roberto, Laitz, Madeleine, Motes, Brandon T., Glazov, Mikhail M., Bulovic, Vladimir

论文摘要

可以通过光学显微镜直接监测新兴半导体中的能量载体传输和重组,从而导致扩散系数(D)的测量,这是设计有效的光电设备的关键特性。 D通常是通过使用平方平方位移(MSD)模型拟合时间分辨的扩展载体轮廓来确定的。尽管这种方法已获得广泛的采用,但由于非线性重组过程人为地扩大了载体分布概况,因此其利用率可以大大高估D。在这里,我们模拟了激子和自由载体半导体中的扩散过程,并介绍了经过修订的MSD模型,这些模型考虑了二阶(即双分子)和三阶(即螺旋螺旋)过程,以准确地恢复到各种材料的d。对于钙钛矿薄膜,这些模型的利用可以通过数量级来减少拟合错误,尤其是对于通常部署的激发条件,载流子密度> 5x10 $^1 $^1 $$^6 $ cm $^ - $$ $$^3 $。此外,我们表明,普遍存在的MSD模型不适合研究具有微观结构的膜,尤其是当边界行为未知并且特征大小与扩散长度相当时。最后,我们发现光子回收仅会影响超时时间尺度上的能量载体剖面或具有快速辐射衰减时间的材料。我们提出了清晰的策略,以调查无序材料中的能源传输,以更有效地设计和优化电子和光电设备。

Energy carrier transport and recombination in emerging semiconductors can be directly monitored with optical microscopy, leading to the measurement of the diffusion coefficient (D), a critical property for design of efficient optoelectronic devices. D is often determined by fitting a time-resolved expanding carrier profile after optical excitation using a Mean Squared Displacement (MSD) Model. Although this approach has gained widespread adoption, its utilization can significantly overestimate D due to the non-linear recombination processes that artificially broaden the carrier distribution profile. Here, we simulate diffusive processes in both excitonic and free carrier semiconductors and present revised MSD Models that take into account second-order (i.e. bimolecular) and third-order (i.e. Auger) processes to accurately recover D for various types of materials. For perovskite thin films, utilization of these models can reduce fitting error by orders of magnitude, especially for commonly deployed excitation conditions where carrier densities are > 5x10$^1$$^6$ cm$^-$$^3$. In addition, we show that commonly-deployed MSD Models are not well-suited for the study of films with microstructure, especially when boundary behavior is unknown and feature sizes are comparable to the diffusion length. Finally, we find that photon recycling only impacts energy carrier profiles on ultrashort time scales or for materials with fast radiative decay times. We present clear strategies to investigate energy transport in disordered materials for more effective design and optimization of electronic and optoelectronic devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源