论文标题
在$ 4 $ - 班级的班级dirichlet Biquadratic领域
On the $4$-rank of class groups of Dirichlet biquadratic fields
论文作者
论文摘要
We show that for $100\%$ of the odd, squarefree integers $n > 0$ the $4$-rank of $\text{Cl}(\mathbb{Q}(i, \sqrt{n}))$ is equal to $ω_3(n) - 1$, where $ω_3$ is the number of prime divisors of $n$ that are $3$ modulo $4$.
We show that for $100\%$ of the odd, squarefree integers $n > 0$ the $4$-rank of $\text{Cl}(\mathbb{Q}(i, \sqrt{n}))$ is equal to $ω_3(n) - 1$, where $ω_3$ is the number of prime divisors of $n$ that are $3$ modulo $4$.