论文标题
一些与Hardy功能有关的平均值结果
Some mean value results related to Hardy's function
论文作者
论文摘要
令$ζ(S)$和$ z(t)$分别为Riemann Zeta功能和Hardy的功能。我们显示$ \ int_0^t z(t)ζ(1/2+it)dt $和$ \ int_0^t z^2(t)ζ(1/2+it)dt $的渐近公式。此外,我们以$ \ int_0^t z^3(t)χ^α(1/2+it)dt $ for $ -1/2 <α<1/2 $而得出上限,其中$χ(s)$是出现在Riemann Zeta函数功能方程中的功能,
Let $ζ(s)$ and $Z(t)$ be the Riemann zeta function and Hardy's function respectively. We show asymptotic formulas for $\int_0^T Z(t)ζ(1/2+it)dt$ and $\int_0^T Z^2(t) ζ(1/2+it)dt$. Furthermore we derive an upper bound for $\int_0^T Z^3(t)χ^α(1/2+it)dt$ for $-1/2<α<1/2$, where $χ(s)$ is the function which appears in the functional equation of the Riemann zeta function: $ζ(s)=χ(s)ζ(1-s)$.