论文标题

通过微分段的无监督学习对企业网络的安全性

Unsupervised Learning for security of Enterprise networks by micro-segmentation

论文作者

Yousefi-Azar, Mahmood, Kaafar, Mohamed-Ali, Walker, Andy

论文摘要

微分段是一种网络安全技术,需要为每个唯一细分提供服务。为此,第一阶段是定义这些唯一的细分(又称安全组),然后初始化政策驱动的安全控制。在本文中,我们提出了一种涵盖安全组和政策创建的无监督学习技术。对于网络资产分组,我们使用资产的动态行为开发基于距离的机器学习算法。也就是说,在观察整个网络日志之后,我们的无监督学习算法建议将网络资产分配到组中。这种非监督技术的关键点是,分组仅在训练阶段生成,并且在测试阶段保持有效。然后,分组阶段的结果被送入规则(安全策略)创建阶段,从而使安全组成为防火墙规则的最低粒度。我们进行了定量和定性实验,并证明了我们网络微分割方法的良好性能。我们进一步开发了一个原型,以在现实世界中验证我们的方法的运行时间性能。我们方法的超参数为用户提供了一个灵活的模型,可以通过企业的安全治理非常轻松地进行微调。

Micro-segmentation is a network security technique that requires delivering services for each unique segment. To do so, the first stage is defining these unique segments (a.k.a security groups) and then initializing policy-driven security controls. In this paper, we propose an unsupervised learning technique that covers both the security grouping and policy creation. For the network asset grouping, we develop a distance-based machine learning algorithm using the dynamic behavior of the assets. That is, after observing the entire network logs, our unsupervised learning algorithm suggests partitioning network assets into the groups. A key point of this un-supervised technique is that the grouping is only generated during the training phase and remains valid during the testing phase. The outcome of the grouping stage is then fed into the rules (security policies) creation stage enabling to establish the security groups as the lowest granularity of firewall rules. We conducted both quantitative and qualitative experiments and demonstrate the good performance of our network micro-segmentation approach. We further developed a prototype to validate the run-time performance of our approach at scale in a real-world environment. The hyper-parameters of our approach provides users with a flexible model to be fine-tuned to adapt very easily with the enterprise's security governance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源