论文标题
非常简单的估计值的理性同源维度,带有边界和标记点的Riemann表面的模量空间
A Very Simple Estimate Of Rational Homological Dimension Of Moduli Spaces Of Riemann Surfaces With Boundary And Marked Points
论文作者
论文摘要
近年来,紧凑型和连接的Riemann表面的模量空间一直是现代数学的核心话题。因此,它们的同源维度成为重要的不变。在开放式串联弦理论的出现数学对应物中,我们给出了带有边界和明显点的Riemann esur体的理性同源维度(可以位于内部和边界上)。我们希望它将在开放式理论中有应用,例如将来的开放式格罗莫夫理论。
The moduli spaces of compact and connected Riemann surfaces has been a central topic in modern mathematics in recent years. Thus their homological dimensions become important invariants. Motivated by the emergence mathematical counterparts of open-closed string theory, we give an estimate of rational homological dimension of Riemann suraces with possible boundary and marked points(can lie on both interior and boundary). We hope it will have applications in open-closed theory, for example, open-closed Gromov-Witten theory in the future.