论文标题

随机洛伦兹气体中的渗透与玻璃度之间的相互作用

Interplay between percolation and glassiness in the random Lorentz gas

论文作者

Biroli, Giulio, Charbonneau, Patrick, Corwin, Eric I., Hu, Yi, Ikeda, Harukuni, Szamel, Grzegorz, Zamponi, Francesco

论文摘要

随机Lorentz气体(RLG)是异质介质中运输模型的最低模型。它还在玻璃系统中建模示踪剂的动力学。但是,这两种观点从根本上是不一致的。前者的逮捕与渗透有关,因此连续,而玻璃样被捕是不连续的。为了阐明RLG中的渗透与玻璃度之间的相互作用,我们将其确切的解决方案考虑在无限维$ d \ rightarrow \ infty $ limit中,以及$ d = 2 \ ldots 20 $中的数字。我们发现,RLG和眼镜的平均场解决方案属于同一普遍性类别,并且与稀有笼子逃生有关的瞬时校正破坏了有限尺寸的玻璃过渡。这一进步表明,RLG可以用作玩具模型,以开发出在结构眼镜中跳跃的第一原则描述。

The random Lorentz gas (RLG) is a minimal model of transport in heterogeneous media. It also models the dynamics of a tracer in a glassy system. These two perspectives, however, are fundamentally inconsistent. Arrest in the former is related to percolation, and hence continuous, while glass-like arrest is discontinuous. In order to clarify the interplay between percolation and glassiness in the RLG, we consider its exact solution in the infinite-dimensional $d\rightarrow\infty$ limit, as well as numerics in $d=2\ldots 20$. We find that the mean field solutions of the RLG and glasses fall in the same universality class, and that instantonic corrections related to rare cage escapes destroy the glass transition in finite dimensions. This advance suggests that the RLG can be used as a toy model to develop a first-principle description of hopping in structural glasses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源