论文标题

大约$ q $ - 符合某些身份

Some $q$-congruences arising from certain identities

论文作者

Wang, Chen, Ni, He-Xia

论文摘要

在本文中,通过构建某些身份,我们证明了一些一致性的$ Q $ - 纳瓦卢人。例如,对于任何奇数$ n> 1 $,我们表明\ begin {chater*} \ sum_ {k = 0}^{n-1} \ frac {(q^{ - 1}; q^2)_k} _k}} {(q; q; q; q; q; q; q; q} q^{(n^2-1)/4} - (1+q)[n] \ pmod {φ_n(q)^2},\\ \ sum_ {k = 0}^{n-1} \ frac} \ frac {(q^3; q^3; q^2) q^{(n^2-9)/4} + \ frac {1 + q} {q^2} [n] \ pmod {φ_n(q)^2},\ end {change*},其中$ q $ q $ -pochhanmmer符号由$(x; x; x; x; x; q)_0 = 1 $和$(x $ and $ and q)定义(1-x)(1-xq)\ cdots(1-xq^{k-1})$对于$ k \ geq1 $,$ q $ -integer由$ [n] = 1+q+q+q+\ cdots+q+q^{n-1} $和$φ_n(q)$ n $ n $ th cyclotomic polynomial nisthe上面的$ Q $ - 企业证实了Gu和Guo最近的一些猜想。

In this paper, by constructing some identities, we prove some $q$-analogues of some congruences. For example, for any odd integer $n>1$, we show that \begin{gather*} \sum_{k=0}^{n-1} \frac{(q^{-1};q^2)_k}{(q;q)_k} q^k \equiv (-1)^{(n+1)/2} q^{(n^2-1)/4} - (1+q)[n] \pmod{Φ_n(q)^2},\\ \sum_{k=0}^{n-1}\frac{(q^3;q^2)_k}{(q;q)_k} q^k \equiv (-1)^{(n+1)/2} q^{(n^2-9)/4} + \frac{1+q}{q^2}[n]\pmod{Φ_n(q)^2}, \end{gather*} where the $q$-Pochhanmmer symbol is defined by $(x;q)_0=1$ and $(x;q)_k = (1-x)(1-xq)\cdots(1-xq^{k-1})$ for $k\geq1$, the $q$-integer is defined by $[n]=1+q+\cdots+q^{n-1}$ and $Φ_n(q)$ is the $n$-th cyclotomic polynomial. The $q$-congruences above confirm some recent conjectures of Gu and Guo.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源