论文标题

量化事件日志的重新识别风险以进行过程挖掘

Quantifying the Re-identification Risk of Event Logs for Process Mining

论文作者

von Voigt, S. Nuñez, Fahrenkrog-Petersen, S. A., Janssen, D., Koschmider, A., Tschorsch, F., Mannhardt, F., Landsiedel, O., Weidlich, M.

论文摘要

在执行业务流程期间记录的事件日志构成了宝贵的信息来源。将过程挖掘技术应用于它们,事件日志可能会揭示实际过程执行,并启用定量或定性过程属性的推理。但是,事件日志通常包含敏感信息,这些信息可能通过背景信息和互相关与个别流程利益相关者有关。因此,我们认为,在发布事件日志时,必须考虑这种重新识别攻击的风险。在本文中,我们展示了如何通过事件日志中个人唯一性的措施来量化重新识别风险。我们还报告了一项大规模研究,该研究探讨了公开可用事件日志集合中的个人独特性。我们的结果表明,可能会重新确定事件日志中所有情况,这突出了保护隐私技术在过程挖掘中的重要性。

Event logs recorded during the execution of business processes constitute a valuable source of information. Applying process mining techniques to them, event logs may reveal the actual process execution and enable reasoning on quantitative or qualitative process properties. However, event logs often contain sensitive information that could be related to individual process stakeholders through background information and cross-correlation. We therefore argue that, when publishing event logs, the risk of such re-identification attacks must be considered. In this paper, we show how to quantify the re-identification risk with measures for the individual uniqueness in event logs. We also report on a large-scale study that explored the individual uniqueness in a collection of publicly available event logs. Our results suggest that potentially up to all of the cases in an event log may be re-identified, which highlights the importance of privacy-preserving techniques in process mining.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源