论文标题

类似量子电路的学习:一种快速可扩展的经典机器学习算法,其性能与量子电路学习相似

Quantum circuit-like learning: A fast and scalable classical machine-learning algorithm with similar performance to quantum circuit learning

论文作者

Koide-Majima, Naoko, Majima, Kei

论文摘要

将近期量子设备应用于机器学习(ML)引起了很多关注。在这种尝试中,Mitarai等人。 (2018年)提出了一个框架,将量子电路用于监督的ML任务,这称为量子电路学习(QCL)。由于使用量子电路,QCL可以使用指数级的高维希尔伯特空间作为其特征空间。但是,与经典算法相比,其效率尚未探索。在这项研究中,使用称为Count Sketch的统计技术,我们提出了一种使用相同希尔伯特空间的经典ML算法。在数值模拟中,我们提出的算法在几个ML任务中显示出与QCL相似的性能。这提供了一个新的观点,可以考虑量子ML算法的计算和内存效率。

The application of near-term quantum devices to machine learning (ML) has attracted much attention. In one such attempt, Mitarai et al. (2018) proposed a framework to use a quantum circuit for supervised ML tasks, which is called quantum circuit learning (QCL). Due to the use of a quantum circuit, QCL can employ an exponentially high-dimensional Hilbert space as its feature space. However, its efficiency compared to classical algorithms remains unexplored. In this study, using a statistical technique called count sketch, we propose a classical ML algorithm that uses the same Hilbert space. In numerical simulations, our proposed algorithm demonstrates similar performance to QCL for several ML tasks. This provides a new perspective with which to consider the computational and memory efficiency of quantum ML algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源