论文标题

加速优化的备份

Memcomputing for Accelerated Optimization

论文作者

Aiken, John, Traversa, Fabio L.

论文摘要

在这项工作中,我们介绍了基于小说,物理启发的计算范式的全新电路体系结构的概念:备忘录。特别是,我们专注于可以设计非线性动态系统的属性的数字备忘录机(DMM);电子电路的最终描述符。这些系统的工作原理依赖于电流和电路电压进行自组织以满足数学关系的能力。特别是对于这项工作,我们讨论了自组织的大门,即自组织代数门(SOAGS),旨在解决线性不平等,因此用于解决整数线性编程(ILP)格式中的优化问题。与传统的Iøgates不同,SOAGS是终端 - 敏锐的,这意味着每个终端都处理输入和输出信号的叠加。当适当地组装以表示给定的ILP问题时,相应的自组织电路会收敛到表达对当前问题的解决方案的均衡。由于DMM的组件是非量子的,因此可以在我们的现代计算机上在软件中有效模拟描述它的普通微分方程,并且可以在硬件中构建具有越野技术的硬件。例如,我们显示了作为服务(MEMCPU XPC)以解决ILP问题的软件实施的这种新颖方法的性能。与当今使用世界著名商业求解器发现的最佳解决方案相比,MEMCPU XPC将解决方案从23小时下降到不到2分钟。

In this work, we introduce the concept of an entirely new circuit architecture based on the novel, physics-inspired computing paradigm: Memcomputing. In particular, we focus on digital memcomputing machines (DMMs) that can be designed leveraging properties of non-linear dynamical systems; ultimate descriptors of electronic circuits. The working principle of these systems relies on the ability of currents and voltages of the circuit to self-organize in order to satisfy mathematical relations. In particular for this work, we discuss self-organizing gates, namely Self-Organizing Algebraic Gates (SOAGs), aimed to solve linear inequalities and therefore used to solve optimization problems in Integer Linear Programming (ILP) format. Unlike conventional IØgates, SOAGs are terminal-agnostic, meaning each terminal handles a superposition of input and output signals. When appropriately assembled to represent a given ILP problem, the corresponding self-organizing circuit converges to the equilibria that express the solutions to the problem at hand. Because DMM's components are non-quantum, the ordinary differential equations describing it can be efficiently simulated on our modern computers in software, as well as be built in hardware with off-of-the-shelf technology. As an example, we show the performance of this novel approach implemented as Software as a Service (MemCPU XPC) to address an ILP problem. Compared to today's best solution found using a world renowned commercial solver, MemCPU XPC brings the time to solution down from 23 hours to less than 2 minutes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源