论文标题
在双层石墨烯/WSE $ _2 $异质结构中观察到时间逆转不变的螺旋边缘模型
Observation of Time-Reversal Invariant Helical Edge-Modes in Bilayer Graphene/WSe$_2$ Heterostructure
论文作者
论文摘要
拓扑绝缘子以及Chern绝缘子和量子霍尔绝缘子阶段被认为是物质受保护的拓扑阶段的范式。本文报告了双层石墨烯/单层WSE $ _2 $基于基于的异质结构的时间反转不变的螺旋边缘模型的实验实现,这一阶段通常被视为通用拓扑绝缘体领域的前体。我们对这一难以捉摸的阶段的观察取决于我们创建介于介质设备的能力,该设备既包括Moiré超晶格电位,又是强旋转轨道耦合的能力。这导致了材料,其电子带结构可以通过外部位移场从微不足道到拓扑调节。我们发现,拓扑阶段的特征是散装带隙和螺旋边缘模式,其电导量准确地量化为$ 2E^2/h $,零外部磁场。我们通过支持实验将螺旋边缘模式放在牢固的基础上,包括验证Landauer-b $ \ Mathrm {\ ddot {u}} $ TTIKER模型在多末端中镜设备中的量子运输模型。我们的非本地运输特性测量表明,螺旋边缘模式是无耗散的,并且在接触探针下平衡。我们通过电场和磁场实现了不同拓扑阶段的可调节性,这使我们能够实现微不足道和多个不同的拓扑相之间的拓扑相变。我们还提出了一个现实模型的理论研究结果,该模型除了复制我们的实验结果外,还解释了拓扑绝缘散装和螺旋边缘模型的起源。我们的实验和理论结果建立了一条可行的途径,以实现时间反转$ \ mathbb {z} _2 $拓扑阶段。
Topological insulators, along with Chern insulators and Quantum Hall insulator phases, are considered as paradigms for symmetry protected topological phases of matter. This article reports the experimental realization of the time-reversal invariant helical edge-modes in bilayer graphene/monolayer WSe$_2$-based heterostructures -- a phase generally considered as a precursor to the field of generic topological insulators. Our observation of this elusive phase depended crucially on our ability to create mesoscopic devices comprising both a moiré superlattice potential and strong spin-orbit coupling; this resulted in materials whose electronic band structure could be tuned from trivial to topological by an external displacement field. We find that the topological phase is characterized by a bulk bandgap and by helical edge-modes with electrical conductance quantized exactly to $2e^2/h$ in zero external magnetic field. We put the helical edge-modes on firm grounds through supporting experiments, including the verification of predictions of the Landauer-B$\mathrm{\ddot{u}}$ttiker model for quantum transport in multi-terminal mesoscopic devices. Our non-local transport properties measurements show that the helical edge-modes are dissipationless and equilibrate at the contact probes. We achieved the tunability of the different topological phases with electric and magnetic fields, which allowed us to achieve topological phase transitions between trivial and multiple, distinct topological phases. We also present results of a theoretical study of a realistic model which, in addition to replicating our experimental results, explains the origin of the topological insulating bulk and helical edge-modes. Our experimental and theoretical results establish a viable route to realizing the time-reversal invariant $\mathbb{Z}_2$ topological phase of matter.