论文标题
私人功能计算,用于非填充编码数据库
Private Function Computation for Noncolluding Coded Databases
论文作者
论文摘要
分布式存储系统(DSS)中的私人计算是私人信息检索(PIR)问题的概括。在这种设置中,用户希望计算存储在$ n $ noncolluding编码数据库中的$ f $消息的函数,即存储用$ [n,k] $线性存储代码编码数据的数据库,同时却没有向数据库揭示有关所需函数的信息。我们考虑私人多项式计算(PPC)的问题。在PPC中,用户希望计算多个$ g $ f $ f $变量(或消息)存储在多个数据库中的多元多项式。首先,我们考虑$ g = 1 $的多项式的私人计算,即用于编码数据库的私人线性计算(PLC)。在PLC中,用户希望在$ F $消息上计算线性组合,同时将所需线性组合的系数保留在数据库中。对于线性编码的DSS,我们提出了一个能力实现的PLC方案,并表明PLC容量是所需的信息量的比率和下载的信息的总数,与大型线性存储代码的PIR的最大距离可分开的代码匹配。然后,我们考虑对高度多项式的私人计算,即$ g> 1 $。对于此设置,我们构建了两个新颖的PPC方案。在第一个方案中,我们考虑使用Lagrange编码的Reed-Solomon编码数据库,该数据库利用最近提出的Star-Product Pir和Lagrange编码计算的想法。第二个方案考虑使用系统的Lagrange编码的编码数据库的特殊情况。两种方案都产生提高的速率,而渐近的速率为$ f \ rightArrow \ infty $,与所有已知方案相比,系统方案给出了明显更好的计算检索率,直到所有已知的存储代码率,取决于候选多项式的最大程度。
Private computation in a distributed storage system (DSS) is a generalization of the private information retrieval (PIR) problem. In such setting a user wishes to compute a function of $f$ messages stored in $n$ noncolluding coded databases, i.e., databases storing data encoded with an $[n,k]$ linear storage code, while revealing no information about the desired function to the databases. We consider the problem of private polynomial computation (PPC). In PPC, a user wishes to compute a multivariate polynomial of degree at most $g$ over $f$ variables (or messages) stored in multiple databases. First, we consider the private computation of polynomials of degree $g=1$, i.e., private linear computation (PLC) for coded databases. In PLC, a user wishes to compute a linear combination over the $f$ messages while keeping the coefficients of the desired linear combination hidden from the database. For a linearly encoded DSS, we present a capacity-achieving PLC scheme and show that the PLC capacity, which is the ratio of the desired amount of information and the total amount of downloaded information, matches the maximum distance separable coded capacity of PIR for a large class of linear storage codes. Then, we consider private computation of higher degree polynomials, i.e., $g>1$. For this setup, we construct two novel PPC schemes. In the first scheme, we consider Reed-Solomon coded databases with Lagrange encoding, which leverages ideas from recently proposed star-product PIR and Lagrange coded computation. The second scheme considers the special case of coded databases with systematic Lagrange encoding. Both schemes yield improved rates, while asymptotically, as $f\rightarrow \infty$, the systematic scheme gives a significantly better computation retrieval rate compared to all known schemes up to some storage code rate that depends on the maximum degree of the candidate polynomials.