论文标题
使用最小信息行人预测模型,在人行横道上对自动化车辆的有效行为感知控制
Efficient Behavior-aware Control of Automated Vehicles at Crosswalks using Minimal Information Pedestrian Prediction Model
论文作者
论文摘要
为了使自动化车辆(AV)可靠地通过人行横道,他们需要了解行人穿越行为。简单可靠的行人行为模型通过允许AV预测未来的行人行为来帮助实时AV控制。在本文中,我们为AVS提出了一种行为知识模型预测控制器(B-MPC),该模型使用先前开发的人行横道交叉模型结合了行人过境行为的长期预测。该模型结合了行人差距接受行为,并利用了最小的行人信息,即他们的位置和速度,以预测行人穿越行为。 BMPC控制器通过模拟验证并与基于规则的控制器进行了比较。通过整合行人行为的预测,B-MPC控制器能够有效地计划更长的视野,并处理比基于规则的控制器更广泛的行人交互场景。结果证明了控制器在交叉场景中安全有效导航的适用性。
For automated vehicles (AVs) to reliably navigate through crosswalks, they need to understand pedestrians crossing behaviors. Simple and reliable pedestrian behavior models aid in real-time AV control by allowing the AVs to predict future pedestrian behaviors. In this paper, we present a Behavior aware Model Predictive Controller (B-MPC) for AVs that incorporates long-term predictions of pedestrian crossing behavior using a previously developed pedestrian crossing model. The model incorporates pedestrians gap acceptance behavior and utilizes minimal pedestrian information, namely their position and speed, to predict pedestrians crossing behaviors. The BMPC controller is validated through simulations and compared to a rule-based controller. By incorporating predictions of pedestrian behavior, the B-MPC controller is able to efficiently plan for longer horizons and handle a wider range of pedestrian interaction scenarios than the rule-based controller. Results demonstrate the applicability of the controller for safe and efficient navigation at crossing scenarios.