论文标题

完整的温柔和特殊的双重代数为$ g $ -pame

Complete gentle and special biserial algebras are $g$-tame

论文作者

Aoki, Toshitaka, Yurikusa, Toshiya

论文摘要

两项宣传复合物的$ g $ - 向量是重要的不变。我们研究一个由所有$ g $ - 矢量锥组成的风扇,用于完整的温和代数。我们表明,任何完整的温和代数都是$ g $ tame,根据定义,封闭其风扇的几何实现都是整个环境矢量空间。我们的主要成分是他们的表面模型和在Dehn Twist下的渐近行为。另一方面,众所周知,任何完整的特殊双重代数都是完全柔和的代数的因素代数,并且$ g $ tAMENEMES均在占据因子代数下保留。结果,我们获得了完整的特殊双词代数的$ g $ tAMESS。

The $g$-vectors of two-term presilting complexes are important invariants. We study a fan consisting of all $g$-vector cones for a complete gentle algebra. We show that any complete gentle algebra is $g$-tame, by definition, the closure of a geometric realization of its fan is the entire ambient vector space. Our main ingredients are their surface model and their asymptotic behavior under Dehn twists. On the other hand, it is known that any complete special biserial algebra is a factor algebra of a complete gentle algebra and the $g$-tameness is preserved under taking factor algebras. As a consequence, we get the $g$-tameness of complete special biserial algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源