论文标题

贝叶斯非参数密度自动降低,滞后选择

Bayesian Nonparametric Density Autoregression with Lag Selection

论文作者

Heiner, Matthew, Kottas, Athanasios

论文摘要

我们开发了一种用于灵活估计表现出非线性滞后依赖性的一般过渡密度的贝叶斯非参数自学模型。我们的方法与使用Dirichlet工艺混合物的贝叶斯密度回归有关,Markovian的可能性是通过从混合物获得的条件分布定义的。这会导致贝叶斯的非参数延伸,使其成型模型公式的配方。我们解决了由马尔可夫结构在可能性上产生的后验抽样的计算挑战。从经典模型的人口动态模型以及旧忠实间歇泉的喷发之间的一系列等待时间中,用合成模型进行了基础模型。我们研究通过基本模型可用的推论,然后再扩展方法,以在一组预先指定的滞后中包括自动相关性检测。通过其他模拟研究探讨了全球和局部滞后选择的推断,并通过分析阿拉斯加溪流中的粉红色鲑鱼丰度的年度时间序列来说明这些方法。我们进一步探索并比较了所提出模型的替代配置的过渡密度估计性能。

We develop a Bayesian nonparametric autoregressive model applied to flexibly estimate general transition densities exhibiting nonlinear lag dependence. Our approach is related to Bayesian density regression using Dirichlet process mixtures, with the Markovian likelihood defined through the conditional distribution obtained from the mixture. This results in a Bayesian nonparametric extension of a mixtures-of-experts model formulation. We address computational challenges to posterior sampling that arise from the Markovian structure in the likelihood. The base model is illustrated with synthetic data from a classical model for population dynamics, as well as a series of waiting times between eruptions of Old Faithful Geyser. We study inferences available through the base model before extending the methodology to include automatic relevance detection among a pre-specified set of lags. Inference for global and local lag selection is explored with additional simulation studies, and the methods are illustrated through analysis of an annual time series of pink salmon abundance in a stream in Alaska. We further explore and compare transition density estimation performance for alternative configurations of the proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源