论文标题

跨模式深脸正态,具有可取消的跳过连接

Cross-modal Deep Face Normals with Deactivable Skip Connections

论文作者

Abrevaya, Victoria Fernandez, Boukhayma, Adnane, Torr, Philip H. S., Boyer, Edmond

论文摘要

我们提出了一种从面部内部颜色图像估算表面正态的方法。尽管已经为单个面部图像提出了数据驱动的策略,但可用的地面真相数据使这个问题变得困难。为了减轻此问题,我们提出了一种可以通过新颖的跨模式学习体系结构来利用所有可用图像和正常数据(无论是否配对)的方法。特别是,我们通过使用具有共享潜在空间的两个编码器码头网络,使用单个模态数据(颜色或正常数据)启用额外的培训。所提出的体系结构还可以通过图像编码器和普通解码器之间的跳过连接在给定的数据之间传输面部细节,并在图像和正常域之间传输。我们方法的核心是一个新型的模块,我们称之为可停用的跳过连接,它允许在可以训练的端到端的相同体系结构中集成自动编码和图像对正常分支。这允许学习丰富的潜在空间,可以准确捕获正常信息。我们将与最先进的方法进行比较,并表明我们的方法可以通过自然的面部图像实现定量和定性的重大改进。

We present an approach for estimating surface normals from in-the-wild color images of faces. While data-driven strategies have been proposed for single face images, limited available ground truth data makes this problem difficult. To alleviate this issue, we propose a method that can leverage all available image and normal data, whether paired or not, thanks to a novel cross-modal learning architecture. In particular, we enable additional training with single modality data, either color or normal, by using two encoder-decoder networks with a shared latent space. The proposed architecture also enables face details to be transferred between the image and normal domains, given paired data, through skip connections between the image encoder and normal decoder. Core to our approach is a novel module that we call deactivable skip connections, which allows integrating both the auto-encoded and image-to-normal branches within the same architecture that can be trained end-to-end. This allows learning of a rich latent space that can accurately capture the normal information. We compare against state-of-the-art methods and show that our approach can achieve significant improvements, both quantitative and qualitative, with natural face images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源