论文标题
保护隐私新闻推荐模型学习
Privacy-Preserving News Recommendation Model Learning
论文作者
论文摘要
新闻推荐旨在根据用户的个人兴趣向用户展示新闻文章。现有的新闻推荐方法依赖于用于模型培训的用户行为数据集中存储,这可能会导致隐私问题和风险由于对用户行为的隐私敏感性而引起的风险。在本文中,我们建议一种基于联合学习的新闻建议模型培训的隐私方法,其中用户行为数据本地存储在用户设备上。我们的方法可以利用大量用户的行为中的有用信息来培训准确的新闻推荐模型,同时消除需要集中存储它们的需求。更具体地说,在每个用户设备上,我们保留新闻推荐模型的本地副本,并根据此设备中的用户行为计算本地模型的梯度。将一组随机选择用户的本地梯度上传到服务器,这些梯度将进一步汇总以更新服务器中的全局模型。由于模型梯度可能包含一些隐式私人信息,因此在上传之前,我们将当地的差异隐私(LDP)应用于它们以提供更好的隐私保护。然后将更新的全局模型分配给每个用户设备以进行本地模型更新。我们重复多个回合的过程。在现实世界中的数据集上进行的广泛实验显示了我们方法在新闻推荐模型培训和隐私保护中的有效性。
News recommendation aims to display news articles to users based on their personal interest. Existing news recommendation methods rely on centralized storage of user behavior data for model training, which may lead to privacy concerns and risks due to the privacy-sensitive nature of user behaviors. In this paper, we propose a privacy-preserving method for news recommendation model training based on federated learning, where the user behavior data is locally stored on user devices. Our method can leverage the useful information in the behaviors of massive number users to train accurate news recommendation models and meanwhile remove the need of centralized storage of them. More specifically, on each user device we keep a local copy of the news recommendation model, and compute gradients of the local model based on the user behaviors in this device. The local gradients from a group of randomly selected users are uploaded to server, which are further aggregated to update the global model in the server. Since the model gradients may contain some implicit private information, we apply local differential privacy (LDP) to them before uploading for better privacy protection. The updated global model is then distributed to each user device for local model update. We repeat this process for multiple rounds. Extensive experiments on a real-world dataset show the effectiveness of our method in news recommendation model training with privacy protection.