论文标题

拓扑扫描,用于对地静止空间对象的多目标检测

Topological Sweep for Multi-Target Detection of Geostationary Space Objects

论文作者

Liu, Daqi, Chen, Bo, Chin, Tat-Jun, Rutten, Mark

论文摘要

对地球轨道进行监视是实现太空情境意识(SSA)的关键任务。我们的工作着重于对地静止轨道(GEO)的人造物体(例如卫星,太空碎片)的光学检测,该物体是电信和导航卫星等主要太空资产的所在地。由于目标的距离,地理对象检测是具有挑战性的,这些距离在明亮的恒星的混乱中显示为小点。在本文中,我们提出了一种基于拓扑扫描的新型多目标检测技术,以从短序列的光学图像中找到地理对象。我们的拓扑扫描技术利用了几何二元性,即跨输入序列的目标对象的大致线性轨迹,从而从明显的混乱和噪声中提取目标。与标准的多目标方法不同,我们的算法确定性地解决了组合问题,以确保高回报率而无需准确的初始化。几何双重性的使用也产生了一种计算上有效且适合在线处理的算法。

Conducting surveillance of the Earth's orbit is a key task towards achieving space situational awareness (SSA). Our work focuses on the optical detection of man-made objects (e.g., satellites, space debris) in Geostationary orbit (GEO), which is home to major space assets such as telecommunications and navigational satellites. GEO object detection is challenging due to the distance of the targets, which appear as small dim points among a clutter of bright stars. In this paper, we propose a novel multi-target detection technique based on topological sweep, to find GEO objects from a short sequence of optical images. Our topological sweep technique exploits the geometric duality that underpins the approximately linear trajectory of target objects across the input sequence, to extract the targets from significant clutter and noise. Unlike standard multi-target methods, our algorithm deterministically solves a combinatorial problem to ensure high-recall rates without requiring accurate initializations. The usage of geometric duality also yields an algorithm that is computationally efficient and suitable for online processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源