论文标题
准紧凑型涡流
Quasi-compact vortices
论文作者
论文摘要
在存在广义磁渗透性的情况下,我们处理Maxwell-Higgs模型中的平面涡旋结构。所研究的模型产生了一个真正的参数,该参数控制解决方案尾部的行为以及与之相关的数量的行为。随着参数变得更大,解决方案得出其边界值的速度更快,揭示了具有双重指数尾巴的特征特征的存在。但是,这些解决方案不是紧凑的,因此我们称它们为准连接涡旋。
We deal with planar vortex structures in Maxwell-Higgs models in the presence of a generalized magnetic permeability. The model under investigation engenders a real parameter that controls the behavior of the tail of the solutions and of the quantities associated to them. As the parameter gets larger, the solutions attain their boundary values faster, unveiling the existence of a peculiar feature, the presence of double exponential tails. However, the solutions are not compact so we call them quasi-compact vortices.