论文标题
与卷积神经网络的快速对称差异图像登记
Fast Symmetric Diffeomorphic Image Registration with Convolutional Neural Networks
论文作者
论文摘要
在许多医学图像研究中,差异性变形图像登记至关重要,因为它提供了独特的特殊特性,包括拓扑保存和转化的可逆性。最近基于深度学习的可变形图像注册方法通过利用卷积神经网络(CNN)来学习从合成基础真理或相似性度量的空间转换来实现快速图像注册。但是,这些方法通常忽略了仅由全球平滑能量函数实现的转换的拓扑保存和转化的平滑度。此外,基于深度学习的方法通常直接估计位移字段,这无法保证逆转换的存在。在本文中,我们提出了一种新颖,有效的无监督对称图像登记方法,该方法最大程度地提高了图像之间的图像之间的相似性,并同时估算了前进和逆变换。我们使用大型大脑图像数据集评估了3D图像注册的方法。我们的方法达到了最新的注册精度和运行时间,同时保持理想的差异性能。
Diffeomorphic deformable image registration is crucial in many medical image studies, as it offers unique, special properties including topology preservation and invertibility of the transformation. Recent deep learning-based deformable image registration methods achieve fast image registration by leveraging a convolutional neural network (CNN) to learn the spatial transformation from the synthetic ground truth or the similarity metric. However, these approaches often ignore the topology preservation of the transformation and the smoothness of the transformation which is enforced by a global smoothing energy function alone. Moreover, deep learning-based approaches often estimate the displacement field directly, which cannot guarantee the existence of the inverse transformation. In this paper, we present a novel, efficient unsupervised symmetric image registration method which maximizes the similarity between images within the space of diffeomorphic maps and estimates both forward and inverse transformations simultaneously. We evaluate our method on 3D image registration with a large scale brain image dataset. Our method achieves state-of-the-art registration accuracy and running time while maintaining desirable diffeomorphic properties.