论文标题

圆球是否最大化(2+1)维QFT的自由能?

Does the Round Sphere Maximize the Free Energy of (2+1)-Dimensional QFTs?

论文作者

Fischetti, Sebastian, Wallis, Lucas, Wiseman, Toby

论文摘要

我们检查了(2+1) - 维几何形状$ \ mathbb {r} \ timesσ$,$σ$具有球形拓扑和规定区域的$ \ timesσ$。使用热内核方法,当$σ$是圆形球体的小变形时,我们会扰动地计算此能量,发现在任何温度下,圆形球是局部最大值。在低温下,自由能差是由于Casimir效应。然后,我们从数值上计算了一类大轴对称变形的这种自由能,提供了证据表明圆形球在全球范围内使其最大化,并且我们表明,随着$σ$的几何形状的几何形状,相对于圆形球体的自由能差不受限制。实际上,我们的扰动和数值结果都源于更强的发现,即圆形球体的热核与变形球的差异似乎总是具有明确的符号。我们研究了结果与单层石墨烯等物理系统的相关性,该石墨烯由支持相对论QFT自由度的膜组成。

We examine the renormalized free energy of the free Dirac fermion and the free scalar on a (2+1)-dimensional geometry $\mathbb{R} \times Σ$, with $Σ$ having spherical topology and prescribed area. Using heat kernel methods, we perturbatively compute this energy when $Σ$ is a small deformation of the round sphere, finding that at any temperature the round sphere is a local maximum. At low temperature the free energy difference is due to the Casimir effect. We then numerically compute this free energy for a class of large axisymmetric deformations, providing evidence that the round sphere globally maximizes it, and we show that the free energy difference relative to the round sphere is unbounded below as the geometry on $Σ$ becomes singular. Both our perturbative and numerical results in fact stem from the stronger finding that the difference between the heat kernels of the round sphere and a deformed sphere always appears to have definite sign. We investigate the relevance of our results to physical systems like monolayer graphene consisting of a membrane supporting relativistic QFT degrees of freedom.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源