论文标题
简单复合物的高阶光谱:重新归一化组方法
The higher-order spectrum of simplicial complexes: a renormalization group approach
论文作者
论文摘要
网络拓扑是一个蓬勃发展的跨学科主题,与包括量子重力和大脑研究在内的不同学科有关。网络拓扑中研究的离散拓扑对象是简单的复合物。简单的复合物不仅考虑了成对的交互,还考虑了两个以上节点之间的多体相互作用来概括网络。高阶拉普拉西亚人是描述简单复合物上高阶扩散的拓扑操作员,并构成了捕获网络拓扑与动力学之间相互作用的自然数学对象。我们表明,高阶上下拉普拉斯人可以具有有限的频谱维度,表征了依赖其订单$ m $的简单复合物上扩散过程的长时间行为。我们提供了重新归一化的组理论,用于计算两个简单复合物的确定性模型的高阶光谱维度:Apollonian和伪法式的简单复合物。我们表明,RG流程受零质量处的固定点的影响,该量确定了订单$ m $的高阶光谱尺寸$ d_s $,其中$ m $,$ m \ geq 0 $。
Network topology is a flourishing interdisciplinary subject that is relevant for different disciplines including quantum gravity and brain research. The discrete topological objects that are investigated in network topology are simplicial complexes. Simplicial complexes generalize networks by not only taking pairwise interactions into account, but also taking into account many-body interactions between more than two nodes. Higher-order Laplacians are topological operators that describe higher-order diffusion on simplicial complexes and constitute the natural mathematical objects that capture the interplay between network topology and dynamics. We show that higher-order up and down Laplacians can have a finite spectral dimension, characterizing the long time behaviour of the diffusion process on simplicial complexes that depends on their order $m$. We provide a renormalization group theory for the calculation of the higher-order spectral dimension of two deterministic models of simplicial complexes: the Apollonian and the pseudo-fractal simplicial complexes. We show that the RG flow is affected by the fixed point at zero mass, which determines the higher-order spectral dimension $d_S$ of the up-Laplacians of order $m$ with $m\geq 0$.