论文标题

自导适应:域自适应对象检测的渐进表示对准

Self-Guided Adaptation: Progressive Representation Alignment for Domain Adaptive Object Detection

论文作者

Li, Zongxian, Ye, Qixiang, Zhang, Chong, Liu, Jingjing, Lu, Shijian, Tian, Yonghong

论文摘要

无监督的域适应性(UDA)在改善对象检测模型的跨域鲁棒性方面取得了前所未有的成功。但是,现有的UDA方法在很大程度上忽略了模型学习过程中的瞬时数据分布,这可能会导致特征表示给定较大的域移动。在这项工作中,我们提出了一个自引导的适应(SGA)模型,目标是对齐特征表示,并在考虑瞬时比对难度的同时将对象检测模型转移到域上。 SGA的核心是计算样品对的“硬度”因子,指示内核空间中的域距离。使用硬度因子,提出的SGA自适应地表明了样本的重要性,并分配了不同的约束。用硬度因素表示,在模型适应过程中以“易于硬化”的方式实施了自我引导的渐进抽样(SPS)。使用多阶段卷积特征,SGA进一步汇总以完全比对检测模型的分层表示。对常用基准测试的广泛实验表明,SGA改善了具有显着边缘的最新方法,同时证明了对大型域移动的有效性。

Unsupervised domain adaptation (UDA) has achieved unprecedented success in improving the cross-domain robustness of object detection models. However, existing UDA methods largely ignore the instantaneous data distribution during model learning, which could deteriorate the feature representation given large domain shift. In this work, we propose a Self-Guided Adaptation (SGA) model, target at aligning feature representation and transferring object detection models across domains while considering the instantaneous alignment difficulty. The core of SGA is to calculate "hardness" factors for sample pairs indicating domain distance in a kernel space. With the hardness factor, the proposed SGA adaptively indicates the importance of samples and assigns them different constrains. Indicated by hardness factors, Self-Guided Progressive Sampling (SPS) is implemented in an "easy-to-hard" way during model adaptation. Using multi-stage convolutional features, SGA is further aggregated to fully align hierarchical representations of detection models. Extensive experiments on commonly used benchmarks show that SGA improves the state-of-the-art methods with significant margins, while demonstrating the effectiveness on large domain shift.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源