论文标题
Elixirnet:关系感知的网络架构适应医疗病变检测
ElixirNet: Relation-aware Network Architecture Adaptation for Medical Lesion Detection
论文作者
论文摘要
医疗病变检测网络的大多数进展仅限于针对自然图像设计的常规检测网络的细微修改。但是,医学图像和自然图像之间存在着巨大的域间隙,其中医学图像检测通常会遇到多个领域特定的挑战,例如高病变/背景相似性,显着的微小病变和严重的类失衡。为自然图像量身定制的手工制作的检测网络无疑是在差异医疗病变域上足够好的吗?是否有更强大的操作,过滤器和子网络可以更好地适合医疗病变检测问题?在本文中,我们介绍了一种新型的Elixirnet,其中包括三个组成部分:1)截断的RPN平衡了假阳性降低的阳性和负数据; 2)自动对医学图像自动定制自动块,以在区域建议之间结合关系的操作,并导致更合适,更有效的分类和本地化。 3)关系转移模块结合了语义关系,并将相关的上下文信息与可解释的图表转移,从而减轻了所有类型病变缺乏注释的问题。关于深层和试剂盒的实验证明了Elixirnet的有效性,具有较少参数的敏感性和精度提高了敏感性和精度。
Most advances in medical lesion detection network are limited to subtle modification on the conventional detection network designed for natural images. However, there exists a vast domain gap between medical images and natural images where the medical image detection often suffers from several domain-specific challenges, such as high lesion/background similarity, dominant tiny lesions, and severe class imbalance. Is a hand-crafted detection network tailored for natural image undoubtedly good enough over a discrepant medical lesion domain? Is there more powerful operations, filters, and sub-networks that better fit the medical lesion detection problem to be discovered? In this paper, we introduce a novel ElixirNet that includes three components: 1) TruncatedRPN balances positive and negative data for false positive reduction; 2) Auto-lesion Block is automatically customized for medical images to incorporate relation-aware operations among region proposals, and leads to more suitable and efficient classification and localization. 3) Relation transfer module incorporates the semantic relationship and transfers the relevant contextual information with an interpretable the graph thus alleviates the problem of lack of annotations for all types of lesions. Experiments on DeepLesion and Kits19 prove the effectiveness of ElixirNet, achieving improvement of both sensitivity and precision over FPN with fewer parameters.