论文标题

基于卷积的神经网络的专利图像检索方法

A Convolutional Neural Network-based Patent Image Retrieval Method for Design Ideation

论文作者

Jiang, Shuo, Luo, Jianxi, Pava, Guillermo Ruiz, Hu, Jie, Magee, Christopher L.

论文摘要

专利数据库通常用于搜索鼓舞人心的刺激,以获得创新的设计机会,因为它具有较大的尺寸,丰富的品种和丰富的设计信息。但是,大多数专利采矿研究仅着眼于文本信息,而忽略了视觉信息。在此,我们提出了一个基于卷积的神经网络(CNN)的专利图像检索方法。这种方法的核心是一种名为Dual-VGG的新型神经网络体系结构,旨在完成两个任务:视觉材料类型预测和国际专利分类(IPC)类标签预测。反过来,训练有素的神经网络提供了嵌入矢量的深层特征,可用于专利图像检索和视觉映射。评估了训练任务和专利图像嵌入空间的准确性,以显示我们模型的性能。在机器人ARM设计检索的案例研究中,还说明了这种方法。与传统的基于关键字的搜索和Google图像搜索相比,该建议的方法发现了工程设计的更多有用的视觉信息。

The patent database is often used in searches of inspirational stimuli for innovative design opportunities because of its large size, extensive variety and rich design information in patent documents. However, most patent mining research only focuses on textual information and ignores visual information. Herein, we propose a convolutional neural network (CNN)-based patent image retrieval method. The core of this approach is a novel neural network architecture named Dual-VGG that is aimed to accomplish two tasks: visual material type prediction and international patent classification (IPC) class label prediction. In turn, the trained neural network provides the deep features in the image embedding vectors that can be utilized for patent image retrieval and visual mapping. The accuracy of both training tasks and patent image embedding space are evaluated to show the performance of our model. This approach is also illustrated in a case study of robot arm design retrieval. Compared to traditional keyword-based searching and Google image searching, the proposed method discovers more useful visual information for engineering design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源