论文标题

解决AI模型培训中的记忆瓶颈

Addressing the Memory Bottleneck in AI Model Training

论文作者

Ojika, David, Patel, Bhavesh, Reina, G. Anthony, Boyer, Trent, Martin, Chad, Shah, Prashant

论文摘要

使用医学成像作为病例研究,我们演示了配备了X86基于X86的服务器上的Intel优化的Tensorflow,该服务器配备了第二代Intel Xeon可伸缩处理器,具有较大的系统存储器,可以训练以扩展服务器配置的内存密集型AI/深度学习模型。我们相信我们的工作代表了一个深神经网络的首次培训,该网络具有大型内存足迹(〜1 tb)。我们向希望开发大型,最先进的AI模型但目前受记忆限制的科学家和研究人员建议这种配置。

Using medical imaging as case-study, we demonstrate how Intel-optimized TensorFlow on an x86-based server equipped with 2nd Generation Intel Xeon Scalable Processors with large system memory allows for the training of memory-intensive AI/deep-learning models in a scale-up server configuration. We believe our work represents the first training of a deep neural network having large memory footprint (~ 1 TB) on a single-node server. We recommend this configuration to scientists and researchers who wish to develop large, state-of-the-art AI models but are currently limited by memory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源