论文标题
强壮的类型不平等和参数羔羊方程
Hardy type inequalities and parametric Lamb equation
论文作者
论文摘要
本文专门用于耐力类型的不平等现象,其剩余,以在欧几里得空间中的开放式集合上紧凑地支持平滑功能。我们建立具有重量功能的新不等式,具体取决于域边界的距离函数。一维$ L_1 $和$ L_P $不平等现象及其多维类似物已被证明。我们考虑有限内半径的开放凸域中的空间不平等。这些不等式中的常数取决于贝塞尔功能的参数羔羊方程的根,在某些特定情况下变敏感。
This paper is devoted to Hardy type inequalities with remainders for compactly supported smooth functions on open sets in the Euclidean space. We establish new inequalities with weight functions depending on the distance function to the boundary of the domain. One-dimensional $L_1$ and $L_p$ inequalities and their multidimensional analogues are proved. We consider spatial inequalities in open convex domains with the finite inner radius. Constants in these inequalities depend on the roots of parametric Lamb equation for the Bessel function and turn out to be sharp in some particular cases.