论文标题
$ {\ cal o}(g^3)$的经典引力散射来自Feynman图
Classical Gravitational Scattering at ${\cal O}(G^3)$ from Feynman Diagrams
论文作者
论文摘要
我们对重力相互作用的大规模粒子在经典极限中进行两回路散射幅度的Feynman图计算。方便地,我们能够通过利用测试粒子极限来避开最征收的图表,在该测试粒子极限中,该系统的完全特征是在Schwarzschild时空传播的粒子。我们假设将重力田基础和量规固定的总体选择为众所周知的Dedonder仪表及其各种表亲。作为高度非平凡的一致性检查,所有量规参数都从最终答案中蒸发出来。此外,我们的结果与Bern等人的结果完全匹配,此处在这里验证了牛顿后第六次订单,同时还可以在第三次后期后订购中再现相同的独特速度重新召集。
We perform a Feynman diagram calculation of the two-loop scattering amplitude for gravitationally interacting massive particles in the classical limit. Conveniently, we are able to sidestep the most taxing diagrams by exploiting the test-particle limit in which the system is fully characterized by a particle propagating in a Schwarzschild spacetime. We assume a general choice of graviton field basis and gauge fixing that contains as a subset the well-known deDonder gauge and its various cousins. As a highly nontrivial consistency check, all gauge parameters evaporate from the final answer. Moreover, our result exactly matches that of Bern et al., here verified up to sixth post-Newtonian order while also reproducing the same unique velocity resummation at third post-Minkowksian order.