论文标题
使用类反应弱监督的PET肿瘤检测
Weakly Supervised PET Tumor Detection Using Class Response
论文作者
论文摘要
医学成像中最大的挑战之一是缺乏数据和注释数据。事实证明,诸如U-NET之类的经典分割方法很有用,但由于缺乏带注释的数据而仍然有限。使用弱监督的学习是解决此问题的一种有希望的方法,但是,由于图像的巨大差异,训练一个模型以检测和定位有效不同类型的病变是一项挑战。在本文中,我们提出了一种新型方法,可以在正电子发射断层扫描(PET)图像中使用仅在图像级别的类标签来定位不同类型的病变。首先,对一个简单的卷积神经网络分类器进行了训练,可以预测两个2D MIP图像上的癌症类型。然后,使用类激活图生成肿瘤的伪定位,并在多任务学习方法中以先验知识进行了反向传播和校正,从而产生了肿瘤检测蒙版。最后,我们使用从两个2D图像产生的掩码来检测3D图像中的肿瘤。我们提出的方法的优点包括仅使用PET图像的两个2D图像检测3D图像中的整个肿瘤体积,并显示出非常有希望的结果。它可以用作在PET扫描中定位非常有效的肿瘤的工具,这对于医生来说是一项耗时的任务。此外,我们表明我们提出的方法可用于以最先进的结果进行放射组学研究。
One of the most challenges in medical imaging is the lack of data and annotated data. It is proven that classical segmentation methods such as U-NET are useful but still limited due to the lack of annotated data. Using a weakly supervised learning is a promising way to address this problem, however, it is challenging to train one model to detect and locate efficiently different type of lesions due to the huge variation in images. In this paper, we present a novel approach to locate different type of lesions in positron emission tomography (PET) images using only a class label at the image-level. First, a simple convolutional neural network classifier is trained to predict the type of cancer on two 2D MIP images. Then, a pseudo-localization of the tumor is generated using class activation maps, back-propagated and corrected in a multitask learning approach with prior knowledge, resulting in a tumor detection mask. Finally, we use the mask generated from the two 2D images to detect the tumor in the 3D image. The advantage of our proposed method consists of detecting the whole tumor volume in 3D images, using only two 2D images of PET image, and showing a very promising results. It can be used as a tool to locate very efficiently tumors in a PET scan, which is a time-consuming task for physicians. In addition, we show that our proposed method can be used to conduct a radiomics study with state of the art results.