论文标题

词典最小的单词和计算后继的状态复杂性

The State Complexity of Lexicographically Smallest Words and Computing Successors

论文作者

Fleischer, Lukas, Shallit, Jeffrey

论文摘要

鉴于有序字母$σ$的常规语言L,每个长度的词典最小(分别,最大)单词本身是常规的。此外,存在一个明确的有限态传感器,在给定的单词W上,输出长度图上最小的单词最小的单词(此后称为W的L-Successor)。在这两种情况下,幼稚的结构都会导致状态数量的指数爆炸。我们证明,如果l被n个状态的DFA识别,则$ 2^{θ(\ sqrt {n \ log n})}} $状态足以让DFA识别由其词典上最小单词组成的子集S(l)的子集S(l)。我们给出了一个匹配的下限,即使S(L)表示为NFA,也可以保留。然后,我们证明,相同的上限和下边界适用于计算L服务器的明确有限状态传感器。

Given a regular language L over an ordered alphabet $Σ$, the set of lexicographically smallest (resp., largest) words of each length is itself regular. Moreover, there exists an unambiguous finite-state transducer that, on a given word w, outputs the length-lexicographically smallest word larger than w (henceforth called the L-successor of w). In both cases, naive constructions result in an exponential blowup in the number of states. We prove that if L is recognized by a DFA with n states, then $2^{Θ(\sqrt{n \log n})}$ states are sufficient for a DFA to recognize the subset S(L) of L composed of its lexicographically smallest words. We give a matching lower bound that holds even if S(L) is represented as an NFA. We then show that the same upper and lower bounds hold for an unambiguous finite-state transducer that computes L-successors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源