论文标题

Sobolev速度场的对流扩散方程

Advection diffusion equations with Sobolev velocity field

论文作者

Bruè, Elia, Nguyen, Quoc-Hung

论文摘要

在本说明中,我们研究了与不可压缩的$ w^{1,p} $速度字段相关的,具有$ p> 2 $的速度。我们提出了有关耗能率的新估计值,并讨论了对上限的应用,以增强耗散速率,密度的$ l^2 $规范的下限以及定量消失的粘度估计。我们论点中采用的关键工具是对规律性结果的传播,来自运输方程的研究,以及将能量耗散率与运输方程的规律性估计联系起来的新结果。最终,我们提供了强调我们估计清晰度的示例。

In this note we study advection diffusion equations associated to incompressible $W^{1,p}$ velocity fields with $p>2$. We present new estimates on the energy dissipation rate and we discuss applications to the study of upper bounds on the enhancing dissipation rate, lower bounds on the $L^2$ norm of the density, and quantitative vanishing viscosity estimates. The key tools employed in our argument are a propagation of regularity result, coming from the study of transport equations, and a new result connecting the energy dissipation rate to regularity estimates for transport equations. Eventually we provide examples which underline the sharpness of our estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源