论文标题
加速基于ADMM的轨迹优化,用于腿部的腿部运动,并耦合刚体动力学
Accelerated ADMM based Trajectory Optimization for Legged Locomotion with Coupled Rigid Body Dynamics
论文作者
论文摘要
轨迹优化在解决不足的机器人系统的运动计划问题方面变得越来越强大。许多先前的研究以层次方式解决了这样一类大型非凸的最佳控制问题。但是,当人们使用全阶模型跟踪从还原级模型生成的参考轨迹时,数值精度问题很容易出现。这项研究调查了一种交替方向方法(ADMM)的方法,并提出了一种针对腿部运动问题的新分裂方案。严格的身体动力学约束和其他一般约束(例如框和锥体约束)以原则上的方式分解为多个子问题。由此产生的多块ADMM框架使我们能够利用不受约束的优化方法的效率 - 分化的动态编程 - 迭代使用质心和全身模型来求解优化。此外,我们提出了一个阶段的加速ADMM,具有过度删节和变化的量化方案,以提高整体收敛速度。我们在较粗糙的地形上评估并验证了拟议的ADMM算法的性能以及在粗糙的地形上的两足球运动问题。
Trajectory optimization is becoming increasingly powerful in addressing motion planning problems of underactuated robotic systems. Numerous prior studies solve such a class of large non-convex optimal control problems in a hierarchical fashion. However, numerical accuracy issues are prone to occur when one uses a full-order model to track reference trajectories generated from a reduced-order model. This study investigates an approach of Alternating Direction Method of Multipliers (ADMM) and proposes a new splitting scheme for legged locomotion problems. Rigid body dynamics constraints and other general constraints such as box and cone constraints are decomposed to multiple sub-problems in a principled manner. The resulting multi-block ADMM framework enables us to leverage the efficiency of an unconstrained optimization method--Differential Dynamical Programming--to iteratively solve the optimizations using centroidal and whole-body models. Furthermore, we propose a Stage-wise Accelerated ADMM with over-relaxation and varying-penalty schemes to improve the overall convergence rate. We evaluate and validate the performance of the proposed ADMM algorithm on a car-parking example and a bipedal locomotion problem over rough terrains.