论文标题
基于图形网络的基于图形的修剪,用于从对比的CT图像中重建3D肝血管形态
Graph Attention Network based Pruning for Reconstructing 3D Liver Vessel Morphology from Contrasted CT Images
论文作者
论文摘要
通过将对比材料注入血管中,多相对比的CT图像可以增强人体血管网络的可见性。从对比的CT图像中重建肝血管的3D几何形态可以实现多个肝前手术计划应用。由于肝血管的形态复杂性和不同多相对比的CT图像之间的不一致的血管强度,肝血管形态的自动重建仍然是一个具有挑战性的问题。另一方面,3D重建需要高的完整性,以避免决策偏见。在本文中,我们提出了一个使用完全卷积神经网络和图形注意力网络的肝血管形态重建框架。首先对完全卷积的神经网络进行了训练,以产生肝容器中心线热图。然后,使用基于图像处理的算法根据热图来追踪过重建的肝血管图模型。我们使用图形注意力网络通过使用聚合的CNN特征预测初始重建中每个分段分支的存在概率来修剪假阳性分支。我们在一个内部数据集上评估了所提出的框架,该数据集由418个具有对比度的多相腹部CT图像组成。提出的图形网络修剪将总体重建F1得分提高了6.4%。它还优于其他最先进的曲线结构重建算法。
With the injection of contrast material into blood vessels, multi-phase contrasted CT images can enhance the visibility of vessel networks in the human body. Reconstructing the 3D geometric morphology of liver vessels from the contrasted CT images can enable multiple liver preoperative surgical planning applications. Automatic reconstruction of liver vessel morphology remains a challenging problem due to the morphological complexity of liver vessels and the inconsistent vessel intensities among different multi-phase contrasted CT images. On the other side, high integrity is required for the 3D reconstruction to avoid decision making biases. In this paper, we propose a framework for liver vessel morphology reconstruction using both a fully convolutional neural network and a graph attention network. A fully convolutional neural network is first trained to produce the liver vessel centerline heatmap. An over-reconstructed liver vessel graph model is then traced based on the heatmap using an image processing based algorithm. We use a graph attention network to prune the false-positive branches by predicting the presence probability of each segmented branch in the initial reconstruction using the aggregated CNN features. We evaluated the proposed framework on an in-house dataset consisting of 418 multi-phase abdomen CT images with contrast. The proposed graph network pruning improves the overall reconstruction F1 score by 6.4% over the baseline. It also outperformed the other state-of-the-art curvilinear structure reconstruction algorithms.