论文标题
建筑自动化系统的数据驱动元数据标记的统一体系结构
A Unified Architecture for Data-Driven Metadata Tagging of Building Automation Systems
论文作者
论文摘要
本文基于数据驱动方法的组合,介绍了构建自动化系统数据的自动点标记的统一体系结构。先进的能源分析应用程序 - 包括故障检测,诊断和监督控制功能,成为改善我们建筑环境性能的重要机会。这些分析的有效应用取决于利用各种建筑物控制和监视系统的结构化数据,但是典型的建筑自动化系统实现不使用任何标准化的元数据模式。尽管已经开发了诸如Haystack和Brick Schema之类的标准来解决此问题,但构造数据的过程,即标记要点以应用标准元数据模式,迄今为止已经是手动过程。这个过程通常代价高昂,劳动密集型且容易出错。在这项工作中,我们通过提出一个UA来解决此差距,该UA通过利用可通过连接到BAS的数据(包括时间序列数据和原始点名称)来自动化点标记的过程。 UA从机器学习和利用其确定性和概率输出来告知点标记过程中,从机器学习和利用了无监督的分类和无监督的聚类技术。此外,我们将UA扩展到嵌入其他输入和输出数据处理模块,这些模块旨在解决与该自动化解决方案的实时部署相关的挑战。我们在两个数据集上测试了UA的现实生活建筑:1。商业零售建筑物和2。来自国家可再生能源实验室校园的办公楼。所提出的方法在每个测试方案中分别正确地应用了85-90%和70-75%的标签。
This article presents a Unified Architecture for automated point tagging of Building Automation System data, based on a combination of data-driven approaches. Advanced energy analytics applications-including fault detection and diagnostics and supervisory control-have emerged as a significant opportunity for improving the performance of our built environment. Effective application of these analytics depends on harnessing structured data from the various building control and monitoring systems, but typical Building Automation System implementations do not employ any standardized metadata schema. While standards such as Project Haystack and Brick Schema have been developed to address this issue, the process of structuring the data, i.e., tagging the points to apply a standard metadata schema, has, to date, been a manual process. This process is typically costly, labor-intensive, and error-prone. In this work we address this gap by proposing a UA that automates the process of point tagging by leveraging the data accessible through connection to the BAS, including time series data and the raw point names. The UA intertwines supervised classification and unsupervised clustering techniques from machine learning and leverages both their deterministic and probabilistic outputs to inform the point tagging process. Furthermore, we extend the UA to embed additional input and output data-processing modules that are designed to address the challenges associated with the real-time deployment of this automation solution. We test the UA on two datasets for real-life buildings: 1. commercial retail buildings and 2. office buildings from the National Renewable Energy Laboratory campus. The proposed methodology correctly applied 85-90 percent and 70-75 percent of the tags in each of these test scenarios, respectively.