论文标题
融合L-H转变中的时间依赖性概率密度函数和信息几何形状
Time-dependent Probability Density Functions and Information Geometry in the Fusion L-H Transition
论文作者
论文摘要
我们通过扩展了先前的猎物预言模型(Kim&diamond,Phys。Rev。Lett。91,185006,2003),对低到高限制模式(L-H)过渡的时间依赖性概率密度函数(PDF)进行了首次研究。我们通过表现出强烈的非高斯PDF来强调平均值和差异在理解L-H转变时的有限效用,并且峰值的数量在时间变化。我们还通过使用信息长度,动态时间尺度和信息阶段肖像提出了一种新的信息几何方法,并在预测过渡和湍流和区域流之间显示了它们的效用。特别是,我们证明了区域流的间歇性(罕见事件)的重要性,这些层流可以在促进L-H转变中发挥重要作用。
We report a first study of time-dependent Probability Density Functions (PDFs) in the Low-to- High confinement mode (L-H) transition by extending the previous prey-predator-type model (Kim & Diamond, Phys. Rev. Lett. 91, 185006, 2003) to a stochastic model. We highlight the limited utility of mean value and variance in understanding the L-H transition by showing strongly non-Gaussian PDFs, with the number of peaks changing in time. We also propose a new information geometric method by using information length, dynamical time scale, and information phase portrait, and show their utility in forecasting transitions and self-regulation between turbulence and zonal flows. In particular, we demonstrate the importance of intermittency (rare events of large amplitude) of zonal flows that can play an important role in promoting the L-H transition.