论文标题
多标签自然语言处理以识别Mimic-III住院注释的诊断和程序代码
Multi-label natural language processing to identify diagnosis and procedure codes from MIMIC-III inpatient notes
论文作者
论文摘要
在美国,25%或超过2000亿美元的医院支出账户涉及涉及医疗编码和计费服务的行政费用。随着患者记录数量的增加,执行的代码的手动分配是压倒性的,耗时的且容易出错的,从而导致计费错误。自然语言处理可以自动从非结构化的临床笔记中提取代码/标签,这可以帮助人类编码者节省时间,提高生产率并验证医疗编码错误。我们的目标是通过执行多标签分类从临床注释中确定适当的诊断和程序代码。我们使用了从模拟III数据库中的重症监护患者的去识别数据,并将数据子设置为选择十个(前10)和五十(前50名)最常见的诊断和程序,分别涵盖了所有入学率的47.45%和74.12%。我们从变形金刚(BERT)实施了最新的双向编码器表示,以对80%的数据进行微调语言模型,并在其余20%上进行了验证。该模型的总体准确度为87.08%,F1得分为85.82%,而前十名代码的AUC为91.76%。对于前50个代码,我们的模型的总体准确度为93.76%,F1得分为92.24%,AUC为91%。与先前发表的研究相比,我们的模型在预测临床文本的代码方面的表现优于。我们讨论了将模拟物伯特的知识发现过程推广到其他临床注释的方法。这可以帮助人类编码者节省时间,防止积压以及由于编码错误而导致的额外费用。
In the United States, 25% or greater than 200 billion dollars of hospital spending accounts for administrative costs that involve services for medical coding and billing. With the increasing number of patient records, manual assignment of the codes performed is overwhelming, time-consuming and error-prone, causing billing errors. Natural language processing can automate the extraction of codes/labels from unstructured clinical notes, which can aid human coders to save time, increase productivity, and verify medical coding errors. Our objective is to identify appropriate diagnosis and procedure codes from clinical notes by performing multi-label classification. We used de-identified data of critical care patients from the MIMIC-III database and subset the data to select the ten (top-10) and fifty (top-50) most common diagnoses and procedures, which covers 47.45% and 74.12% of all admissions respectively. We implemented state-of-the-art Bidirectional Encoder Representations from Transformers (BERT) to fine-tune the language model on 80% of the data and validated on the remaining 20%. The model achieved an overall accuracy of 87.08%, an F1 score of 85.82%, and an AUC of 91.76% for top-10 codes. For the top-50 codes, our model achieved an overall accuracy of 93.76%, an F1 score of 92.24%, and AUC of 91%. When compared to previously published research, our model outperforms in predicting codes from the clinical text. We discuss approaches to generalize the knowledge discovery process of our MIMIC-BERT to other clinical notes. This can help human coders to save time, prevent backlogs, and additional costs due to coding errors.