论文标题
使用离散分布功能的Riemann-Stieltjes和Lebesgue-Stieltjes集成之间的比较
Comparison between Riemann-Stieltjes and Lebesgue-Stieltjes integration using discrete distribution functions
论文作者
论文摘要
在数学的许多分支中,频繁地集成在界限(这些功能)的界限(这些功能的界点)的函数方面,特别是在随机过程中。对于此类功能和扩展,Riemann-Stieltjes和Lebesgue-Stieltjes集成与积分公式之间的比较为学生以及从业者和研究人员和研究人员提供了有趣的事实。我们经历了存在的存在条件,与该类型的功能相关的Riemann-Stieltjes积分并将结果与Lebesgue-Stieltjes理论的期望进行了比较。
Integrating with respect to functions which are constant on intervals whose bounds are discontinuity points (of those functions) is frequent in many branches of Mathematics, specially in stochastic processes. For such functions and alike extension, a comparison between Riemann-Stieltjes and Lebesgue-Stieltjes integration and the integrals formulas leads to interesting facts for students (as complements of Measure Theory and Integrations) and for practitioners and and researchers. We undergone conditions of existence the Riemann-Stieltjes integrals related to that type of function and compare the results with what should be expected for Lebesgue-Stieltjes theory.