论文标题

跟踪有关COVID-19大流行的社交媒体论述:开发公共冠状病毒Twitter数据集

Tracking Social Media Discourse About the COVID-19 Pandemic: Development of a Public Coronavirus Twitter Data Set

论文作者

Chen, Emily, Lerman, Kristina, Ferrara, Emilio

论文摘要

在撰写本文时,新颖的冠状病毒(Covid-19)大流行爆发已经给世界各地的许多国家的公民,资源和经济体带来了巨大压力。社会疏远的措施,旅行禁令,自我汇集和关闭业务正在改变全球社会的结构。由于人们被迫离开公共场所,现在就这些现象进行了许多关于这些现象的交谈,例如在Twitter等社交媒体平台上。在本文中,我们描述了自2020年1月22日以来一直在不断收集的多语言冠状病毒(Covid-19)Twitter数据集。我们正在向研究社区(https://github.com/echen102/covid-19-tweetids)提供数据集。我们希望我们的贡献能够在行星规模的流行病爆发前所未有的比例和含义的情况下,使在线对话动态进行研究。该数据集还可以帮助跟踪科学冠状病毒的错误信息和未经验证的谣言,或者使人们能够理解恐惧和恐慌 - 无疑。最终,该数据集可能有助于实现知情的解决方案并规定有针对性的政策干预措施以抗击这一全球危机。

At the time of this writing, the novel coronavirus (COVID-19) pandemic outbreak has already put tremendous strain on many countries' citizens, resources and economies around the world. Social distancing measures, travel bans, self-quarantines, and business closures are changing the very fabric of societies worldwide. With people forced out of public spaces, much conversation about these phenomena now occurs online, e.g., on social media platforms like Twitter. In this paper, we describe a multilingual coronavirus (COVID-19) Twitter dataset that we have been continuously collecting since January 22, 2020. We are making our dataset available to the research community (https://github.com/echen102/COVID-19-TweetIDs). It is our hope that our contribution will enable the study of online conversation dynamics in the context of a planetary-scale epidemic outbreak of unprecedented proportions and implications. This dataset could also help track scientific coronavirus misinformation and unverified rumors, or enable the understanding of fear and panic -- and undoubtedly more. Ultimately, this dataset may contribute towards enabling informed solutions and prescribing targeted policy interventions to fight this global crisis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源