论文标题
共形场理论中的散射幅度
A Scattering Amplitude in Conformal Field Theory
论文作者
论文摘要
我们将形态因子和散射幅度定义为共形场理论,为时序相关函数的傅立叶变换的系数,为$ p^2 \至0 $。特别是,我们研究了从相同的标量主要运算符的四点函数获得的形式$ f(s,t,u)$。我们表明$ f $是交叉对称,分析性的,并且具有部分波扩展。我们在3D ISING模型,扰动固定点和全息CFT中说明了我们的发现。
We define form factors and scattering amplitudes in Conformal Field Theory as the coefficient of the singularity of the Fourier transform of time-ordered correlation functions, as $p^2 \to 0$. In particular, we study a form factor $F(s,t,u)$ obtained from a four-point function of identical scalar primary operators. We show that $F$ is crossing symmetric, analytic and it has a partial wave expansion. We illustrate our findings in the 3d Ising model, perturbative fixed points and holographic CFTs.