论文标题

使用上下文适应传感器漂移

Using context to adapt to sensor drift

论文作者

Warner, J., Devaraj, A., Miikkulainen, R.

论文摘要

终身开发使动物和机器可以适应环境的变化以及自己的系统中的变化,例如传感器和执行器的磨损。这种适应的重要用例是工业气味感应。金属基的传感器可用于检测空气中的气态化合物。但是,气体与传感器相互作用,导致其响应在称为传感器漂移过程中随着时间的流逝而变化。传感器漂移是不可逆转的,需要频繁地重新校准,并使用其他数据进行重新校准。本文表明,代表漂移作为气味感测技巧的自适应系统会自动实现相同的目标。在对变化的历史进行培训之后,神经网络预测了未来的环境,从而使上下文+技能传感系统适应传感器漂移。在气体传感器漂移的工业数据集上进行了评估,该方法的性能要比标准的漂移和结合方法更好。通过这种方式,上下文+技能系统模仿了动物嗅觉系统适应不断变化的世界的自然能力,并证明了动物嗅觉系统如何在现实世界应用中有效。

Lifelong development allows animals and machines to adapt to changes in the environment as well as in their own systems, such as wear and tear in sensors and actuators. An important use case of such adaptation is industrial odor-sensing. Metal-oxide-based sensors can be used to detect gaseous compounds in the air; however, the gases interact with the sensors, causing their responses to change over time in a process called sensor drift. Sensor drift is irreversible and requires frequent recalibration with additional data. This paper demonstrates that an adaptive system that represents the drift as context for the skill of odor sensing achieves the same goal automatically. After it is trained on the history of changes, a neural network predicts future contexts, allowing the context+skill sensing system to adapt to sensor drift. Evaluated on an industrial dataset of gas-sensor drift, the approach performed better than standard drift-naive and ensembling methods. In this way, the context+skill system emulates the natural ability of animal olfaction systems to adapt to a changing world, and demonstrates how it can be effective in real-world applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源