论文标题

解决Wiener功能驱动的非马克维亚随机控制问题

Solving non-Markovian Stochastic Control Problems driven by Wiener Functionals

论文作者

Leão, Dorival, Ohashi, Alberto, de Souza, Francys Andrews

论文摘要

在本文中,我们提出了一种由布朗运动过滤驱动的随机控制问题的一般方法,包括由相互奇异措施控制的非马克维亚和非 - 障碍状态过程。本文的主要结果是开发一种数值方案,用于通过有限维近似程序计算与受控Wiener功能相关的近乎最佳控制。该方法不需要在扩散组件上的价值过程和椭圆度条件上进行功能可不同的假设。该方法的一般收敛是在相当弱的条件下建立的,用于不同类型的非马克维亚和非偏 - 型群态。如果控制仅在受控系统的漂移组件上起作用,则提供明确的收敛速率。近密封/开环的最佳控件完全以动态编程算法为特征,并且根据可能潜在的非马克维亚内存的强度对其进行分类。该理论应用于基于路径依赖性的SDE和粗糙的随机波动率模型的随机控制问题,在该模型中,控制了漂移和可能退化的扩散组件。还讨论了由分数布朗运动驱动的非线性路径依赖性SDE的最佳控制。最后,我们提出了一个简单的数值示例来说明该方法。

In this article, we present a general methodology for stochastic control problems driven by the Brownian motion filtration including non-Markovian and non-semimartingale state processes controlled by mutually singular measures. The main result of this paper is the development of a numerical scheme for computing near-optimal controls associated with controlled Wiener functionals via a finite-dimensional approximation procedure. The approach does not require functional differentiability assumptions on the value process and ellipticity conditions on the diffusion components. The general convergence of the method is established under rather weak conditions for distinct types of non-Markovian and non-semimartingale states. Explicit rates of convergence are provided in case the control acts only on the drift component of the controlled system. Near-closed/open-loop optimal controls are fully characterized by a dynamic programming algorithm and they are classified according to the strength of the possibly underlying non-Markovian memory. The theory is applied to stochastic control problems based on path-dependent SDEs and rough stochastic volatility models, where both drift and possibly degenerated diffusion components are controlled. Optimal control of drifts for nonlinear path-dependent SDEs driven by fractional Brownian motion with exponent $H\in (0,\frac{1}{2})$ is also discussed. Finally, we present a simple numerical example to illustrate the method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源