论文标题
端到端视频异常检测的自训练的深序回归
Self-trained Deep Ordinal Regression for End-to-End Video Anomaly Detection
论文作者
论文摘要
视频异常检测对于各种实际应用至关重要,因为尽管视频量不多,但它允许人类的注意力集中在可能引起的事件上。我们表明,将自我训练的深序回归应用于视频异常检测,克服了现有方法的两个关键局限性,即1)高度依赖手动标记的正常训练数据; 2)亚最佳特征学习。通过制定替代两级序数回归任务,我们设计了一种端到端可训练的视频异常检测方法,该方法可以实现联合表示学习和异常评分,而无需手动标记正常/异常数据。在八个现实世界的视频场景上进行的实验表明,我们提出的方法优于最先进的方法,这些方法不需要大量的差距标记培训数据,并且可以轻松且准确地定位已确定的异常情况。此外,我们证明我们的方法提供了有效的人类在环形异常检测中,这在罕见异常并且假阴性成本很高的应用中至关重要。
Video anomaly detection is of critical practical importance to a variety of real applications because it allows human attention to be focused on events that are likely to be of interest, in spite of an otherwise overwhelming volume of video. We show that applying self-trained deep ordinal regression to video anomaly detection overcomes two key limitations of existing methods, namely, 1) being highly dependent on manually labeled normal training data; and 2) sub-optimal feature learning. By formulating a surrogate two-class ordinal regression task we devise an end-to-end trainable video anomaly detection approach that enables joint representation learning and anomaly scoring without manually labeled normal/abnormal data. Experiments on eight real-world video scenes show that our proposed method outperforms state-of-the-art methods that require no labeled training data by a substantial margin, and enables easy and accurate localization of the identified anomalies. Furthermore, we demonstrate that our method offers effective human-in-the-loop anomaly detection which can be critical in applications where anomalies are rare and the false-negative cost is high.