论文标题
DNN+Neurosim v2.0:用于计算芯片培训的计算机训练器的端到端基准测试框架
DNN+NeuroSim V2.0: An End-to-End Benchmarking Framework for Compute-in-Memory Accelerators for On-chip Training
论文作者
论文摘要
DNN+Neurosim是一个集成框架,用于基准计算内存(CIM)加速器,用于深神经网络,具有从设备级到电路级到算法级别到算法级别的层次设计选项。开发了Python包装器,可与流行的机器学习平台接口Neurosim:Pytorch,以支持灵活的网络结构。该框架提供了自动算法到硬件映射,并评估了芯片级别的区域,能源效率和吞吐量的培训或推理,以及使用硬件约束的培训/推理准确性。我们开发了我们先前的工作(DNN+Neurosim V1.1),以估计突触设备中可靠性的影响,以及模数转换器(ADC)量化量损失对推理引擎准确性和硬件性能的影响。在这项工作中,我们进一步研究了类似物的非挥发记忆非理想设备对片训练的影响。通过将重量更新的非线性,不对称性,不对称性,设备对设备和周期为周期变化的变化介绍到Python包装器中,以及用于神经介质中的错误/重量梯度计算的外围电路,我们在CIM标记的CIM加速器中基于CRAMET-aart Sram和Envm for vgg-8 cryatial for vgg-8芯片训练的设备。提出的DNN+Neurosim v2.0框架可在GitHub上获得。
DNN+NeuroSim is an integrated framework to benchmark compute-in-memory (CIM) accelerators for deep neural networks, with hierarchical design options from device-level, to circuit-level and up to algorithm-level. A python wrapper is developed to interface NeuroSim with a popular machine learning platform: Pytorch, to support flexible network structures. The framework provides automatic algorithm-to-hardware mapping, and evaluates chip-level area, energy efficiency and throughput for training or inference, as well as training/inference accuracy with hardware constraints. Our prior work (DNN+NeuroSim V1.1) was developed to estimate the impact of reliability in synaptic devices, and analog-to-digital converter (ADC) quantization loss on the accuracy and hardware performance of inference engines. In this work, we further investigated the impact of the analog emerging non-volatile memory non-ideal device properties for on-chip training. By introducing the nonlinearity, asymmetry, device-to-device and cycle-to-cycle variation of weight update into the python wrapper, and peripheral circuits for error/weight gradient computation in NeuroSim core, we benchmarked CIM accelerators based on state-of-the-art SRAM and eNVM devices for VGG-8 on CIFAR-10 dataset, revealing the crucial specs of synaptic devices for on-chip training. The proposed DNN+NeuroSim V2.0 framework is available on GitHub.