论文标题
找到最接近的正常结构矩阵
Finding the closest normal structured matrix
论文作者
论文摘要
给定一个结构化矩阵$ a $,我们研究了找到具有相同结构的最接近的正常矩阵的问题。我们感兴趣的结构是:哈密顿式,偏斜 - 哈米尔顿人,人均和陶艺 - 温米特人。我们开发了一种具有结构的Jacobi型算法,用于查找最接近的正常结构矩阵,并表明这种算法会收敛到目标函数的固定点。
Given a structured matrix $A$ we study the problem of finding the closest normal matrix with the same structure. The structures of our interest are: Hamiltonian, skew-Hamiltonian, per-Hermitian, and perskew-Hermitian. We develop a structure-preserving Jacobi-type algorithm for finding the closest normal structured matrix and show that such algorithm converges to a stationary point of the objective function.