论文标题

短GRB和Kilonovae的磁力发动机

A magnetar engine for short GRBs and kilonovae

论文作者

Mösta, Philipp, Radice, David, Haas, Roland, Schnetter, Erik, Bernuzzi, Sebastiano

论文摘要

我们通过三维(3D)动力学时期通用 - 偏移(GR)磁性水力动力学(MHD)模拟研究了磁场对二元中子星(BNS)合并残留物进化的影响。我们进化了带有初始螺状磁场的后水残留物,解决由剪切流动驱动的磁扰动性,并包括一个微物理有限的状态方程(EOS)。还包括一种捕获整体能量和轻子数量交换的中微子泄漏方案。我们发现,高质量中子星(HMNS)在磁化不稳定(MRI)引起的湍流将磁场放大至磁力 - 强度之外($ 10^{15} \,\ Mathrm {g} $)。 Ultra-Strong环形场能够从HMN发射相对论的喷气机。我们还找到了一种磁性的风,以$ \ dot {m} _ {\ Mathrm {ej}}} \ simeq 1 \ times10^{ - 1} \,\ mathrm {m _ {m _ {\ odot} {\ odot} \,s^{ - 1}} $。我们的仿真中的总弹出质量为$ 5 \ times 10^{ - 3} \,\ mathrm {m _ {\ odot}} $。这使得源自HMNS的弹射是BNS合并中的重要组成部分,并且是$ r $ $ process元素的有前途的来源,可以为基尔洛诺瓦提供动力。在我们的最高分辨率模拟中,来自HMN的喷气机达到了$ \ sim 5 $的终端Lorentz系数。通过中微子冷却阻止积聚盘突出到极区域,该射流的形成得到了帮助。随着射流中的中微子配对 - 渗透和辐射过程(模拟中未包括)将进一步提高射流中的洛伦兹因子,我们的模拟表明,BNS合并中形成的磁体是短伽马射线爆发(SGRB)的可行发动机。

We investigate the influence of magnetic fields on the evolution of binary neutron-star (BNS) merger remnants via three-dimensional (3D) dynamical-spacetime general-relativistic (GR) magnetohydrodynamic (MHD) simulations. We evolve a postmerger remnant with an initial poloidal magnetic field, resolve the magnetoturbulence driven by shear flows, and include a microphysical finite-temperature equation of state (EOS). A neutrino leakage scheme that captures the overall energetics and lepton number exchange is also included. We find that turbulence induced by the magnetorotational instability (MRI) in the hypermassive neutron star (HMNS) amplifies magnetic field to beyond magnetar-strength ($10^{15}\, \mathrm{G}$). The ultra-strong toroidal field is able to launch a relativistic jet from the HMNS. We also find a magnetized wind that ejects neutron-rich material with a rate of $\dot{M}_{\mathrm{ej}} \simeq 1 \times10^{-1}\, \mathrm{M_{\odot}\, s^{-1}}$. The total ejecta mass in our simulation is $5\times 10^{-3}\, \mathrm{M_{\odot}}$. This makes the ejecta from the HMNS an important component in BNS mergers and a promising source of $r$-process elements that can power a kilonova. The jet from the HMNS reaches a terminal Lorentz factor of $\sim 5$ in our highest-resolution simulation. The formation of this jet is aided by neutrino-cooling preventing the accretion disk from protruding into the polar region. As neutrino pair-annihilation and radiative processes in the jet (which were not included in the simulations) will boost the Lorentz factor in the jet further, our simulations demonstrate that magnetars formed in BNS mergers are a viable engine for short gamma-ray bursts (sGRBs).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源